Quiz \#7 Solutions

1. (a) By the Rank Theorem, $\operatorname{dim} \operatorname{Nul} A=n-\operatorname{rank}=4-2=2$.
(b) All four given vectors are solutions of $A \mathbf{x}=\mathbf{0}$ and, so, are vectors in Nul A. By the Basis Theorem, any linearly independent set of two of these vectors will form a basis for $\operatorname{Nul} A$. For example, $\left\{\mathbf{p}_{1}, \mathbf{p}_{2}\right\}$ forms a basis for $\operatorname{Nul} A$ because neither vector is a scalar multiple of the other, so they are linearly independent. (Actually, in this example, any two of the four vectors will work as a basis.)
2. (a) The coefficient matrix is

$$
A=\left[\begin{array}{lllll}
1 & 0 & 1 & 1 & 2 \\
0 & 1 & 0 & 1 & 3
\end{array}\right]
$$

The augmented matrix

$$
\left[\begin{array}{llllll}
1 & 0 & 1 & 1 & 2 & 0 \\
0 & 1 & 0 & 1 & 3 & 0
\end{array}\right]
$$

is already in reduced echelon form, and its general solution is given by

$$
\left\{\begin{array}{l}
x_{1}=-x_{3}-x_{4}-2 x_{5} \\
x_{2}=-x_{4}-3 x_{5} \\
x_{3}, x_{4}, x_{5} \text { free }
\end{array}\right.
$$

giving a vector parametric form

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{rr}
-x_{3}-x_{4}-2 x_{5} \\
& -x_{4}-3 x_{5} \\
x_{3} & \\
& x_{4} \\
& \\
& x_{5}
\end{array}\right]=x_{3}\left[\begin{array}{r}
-1 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{r}
-1 \\
-1 \\
0 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
-2 \\
-3 \\
0 \\
0 \\
1
\end{array}\right], \quad x_{3}, x_{4}, x_{5} \text { free }
$$

This gives a basis for $\operatorname{Nul} A$ of:

$$
\left\{\left[\begin{array}{r}
-1 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
-1 \\
-1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{r}
-2 \\
-3 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

which gives $\operatorname{dim} \operatorname{Nul} A=3$.
(b) The new coefficient matrix B is given by

$$
B=\left[\begin{array}{rrrrr}
1 & 0 & 1 & 1 & 2 \\
0 & 1 & 0 & 1 & 3 \\
2 & -1 & 2 & 2 & 1
\end{array}\right]
$$

Solving the homogeneous equation, we get:

$$
\begin{aligned}
& {\left[\begin{array}{rrrrrr}
1 & 0 & 1 & 1 & 2 & 0 \\
0 & 1 & 0 & 1 & 3 & 0 \\
2 & -1 & 2 & 2 & 1 & 0
\end{array}\right] \xrightarrow{R 3 \rightarrow R 3-2 R 1}\left[\begin{array}{rrrrrr}
1 & 0 & 1 & 1 & 2 & 0 \\
0 & 1 & 0 & 1 & 3 & 0 \\
0 & -1 & 0 & 0 & -3 & 0
\end{array}\right]} \\
& \xrightarrow{R 3 \rightarrow R 3+R 2}\left[\begin{array}{llllll}
1 & 0 & 1 & 1 & 2 & 0 \\
0 & 1 & 0 & 1 & 3 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right] \xrightarrow{\substack{R 1 \rightarrow R 1-R 3 \\
R 2 \rightarrow R 2-R 3}}\left[\begin{array}{llllll}
1 & 0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
\end{aligned}
$$

which gives the general solution:

$$
\left\{\begin{array}{l}
x_{1}=-x_{3}-2 x_{5} \\
x_{2}=-3 x_{5} \\
x_{4}=0 \\
x_{3}, x_{5} \text { free }
\end{array}\right.
$$

and vector parametric form

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
-x_{3}-2 x_{5} \\
-3 x_{5} \\
x_{3} \\
0 \\
x_{5}
\end{array}\right]=x_{3}\left[\begin{array}{r}
-1 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
-2 \\
-3 \\
0 \\
0 \\
1
\end{array}\right], \quad x_{3}, x_{5} \text { free }
$$

This gives a basis for $\mathrm{Nul} B$ of:

$$
\left\{\left[\begin{array}{r}
-1 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
-2 \\
-3 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

which gives $\operatorname{dim} \operatorname{Nul} B=2$.
3. (a) The determinant of a triangular matrix is the product of its diagonal elements:

$$
\operatorname{det} A=(1)(2)(3)(4)=24
$$

(b) We calculate the inverse of A in the usual manner:

$$
\left[\begin{array}{cccccccc}
\hline 1 & 0 & 1 & 2 & 1 & 0 & 0 & 0 \\
0 & \boxed{2} & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 3 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 & 0 & 1
\end{array}\right] \xrightarrow{R 4 \rightarrow \frac{1}{4} R 4}\left[\begin{array}{cccccccc}
\boxed{1} & 0 & 1 & 2 & 1 & 0 & 0 & 0 \\
0 & \boxed{2} & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & \boxed{3} & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & \frac{1}{4}
\end{array}\right]
$$

$$
\begin{aligned}
& \xrightarrow{R 1 \rightarrow R 1-2 R 4}\left[\begin{array}{cccccccc}
\boxed{1} & 0 & 1 & 0 & 1 & 0 & 0 & -\frac{1}{2} \\
0 & \boxed{2} & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & \boxed{3} & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & \frac{1}{4}
\end{array}\right] \xrightarrow{R 2 \rightarrow R 2-R 4}\left[\begin{array}{ccccccccc}
\boxed{1} & 0 & 1 & 0 & 1 & 0 & 0 & -\frac{1}{2} \\
0 & \boxed{2} & 0 & 0 & 0 & 1 & 0 & -\frac{1}{4} \\
0 & 0 & 3 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & \boxed{1} & 0 & 0 & 0 & \frac{1}{4}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow{R 2 \rightarrow \frac{1}{2} R 2}\left[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 1 & 0 & -\frac{1}{3} & -\frac{1}{2} \\
0 & 1 & 0 & 0 & 0 & \frac{1}{2} & 0 & -\frac{1}{8} \\
0 & 0 & 1 & 0 & 0 & 0 & \frac{1}{3} & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & \frac{1}{4}
\end{array}\right]
\end{aligned}
$$

This gives the inverse

$$
A^{-1}=\left[\begin{array}{cccc}
1 & 0 & -\frac{1}{3} & -\frac{1}{2} \\
0 & \frac{1}{2} & 0 & -\frac{1}{8} \\
0 & 0 & \frac{1}{3} & 0 \\
0 & 0 & 0 & \frac{1}{4}
\end{array}\right]
$$

(c) The eigenvalues of a triangular matrix are its diagonal entries, so the eigenvalues of A are $1,2,3$, and 4 , and the eigenvalues of A^{-1} (also a triangular matrix) are $1,1 / 2,1 / 3$, and $1 / 4$.
(d) A 's smallest eigenvalue is 1 . It's eigenspace is $\operatorname{Nul}(A-I)$. We have

$$
A-I=\left[\begin{array}{llll}
0 & 0 & 1 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

and we find the null space of this matrix by the following (tricky) row reduction of the augmented matrix

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
0 & 0 & 1 & 2 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 3 & 0
\end{array}\right] \xrightarrow{R 1 \leftrightarrow R 2}\left[\begin{array}{ccccc}
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 3 & 0
\end{array}\right]} \\
& \xrightarrow{R 3 \rightarrow R 3-2 R 2}\left[\begin{array}{ccccc}
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & -4 & 0 \\
0 & 0 & 0 & 3 & 0
\end{array}\right] \xrightarrow{R 4 \rightarrow R 4+\frac{3}{4} R 3}\left[\begin{array}{ccccc}
0 & 1 & 0 & 1 & 0 \\
0 & 0 & \boxed{1} & 2 & 0 \\
0 & 0 & 0 & -4 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \xrightarrow{R 3 \rightarrow-\frac{1}{4} R 3}\left[\begin{array}{ccccc}
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{R 1 \rightarrow R 1-R 3}\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \xrightarrow{R 2 \rightarrow R 2-2 R 3}\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & \boxed{1} & 0 & 0 \\
0 & 0 & 0 & (1) & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

This gives the (tricky) general solution

$$
\left\{\begin{array}{l}
x_{2}=0 \\
x_{3}=0 \\
x_{4}=0 \\
x_{1} \text { free }
\end{array}\right.
$$

and its (tricky) vector parametric form

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
x_{1} \\
0 \\
0 \\
0
\end{array}\right]=x_{1}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \quad x_{1} \text { free }
$$

Thus the eigenspace associated with the eigenvalue 1 has basis

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]\right\}
$$

4. (a) Note that the characteristic equation has the form:
$0=\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{rr}-\lambda & -2 \\ 1 & 3-\lambda\end{array}\right]=-\lambda(3-\lambda)-(-2)=\lambda^{2}-3 \lambda+2=(\lambda-1)(\lambda-2)$
So, the characteristic equation has solutions $\lambda=1$ and $\lambda=2$, and these are the two eigenvalues of A.
(b) For the eigenvalue $\lambda=1$, we find the null space of $A-I$:

$$
\left[\begin{array}{rrr}
-1 & -2 & 0 \\
1 & 2 & 0
\end{array}\right] \xrightarrow{R 2 \rightarrow R 2+R 1}\left[\begin{array}{rrr}
-1 & -2 & 0 \\
0 & 0 & 0
\end{array}\right] \xrightarrow{R 1 \rightarrow-R 1}\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

This gives general solution

$$
\left\{\begin{array}{l}
x_{1}=-2 x_{2} \\
x_{2} \text { free }
\end{array}\right.
$$

and parametric vector form

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{r}
-2 x_{2} \\
x_{2}
\end{array}\right]=x_{2}\left[\begin{array}{r}
-2 \\
1
\end{array}\right], \quad x_{2} \text { free }
$$

so a basis for this eigenspace is $\{(-2,1)\}$.
For the eigenvalue $\lambda=2$, we find the null space of $A-2 I$:

$$
\left[\begin{array}{rrr}
-2 & -2 & 0 \\
1 & 1 & 0
\end{array}\right] \xrightarrow{R 1 \leftrightarrow R 2}\left[\begin{array}{rrr}
1 & 1 & 0 \\
-2 & -2 & 0
\end{array}\right] \xrightarrow{R 2 \rightarrow R 2+2 R 1}\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

This gives general solution

$$
\left\{\begin{array}{l}
x_{1}=-x_{2} \\
x_{2} \text { free }
\end{array}\right.
$$

and parametric vector form

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{r}
-x_{2} \\
x_{2}
\end{array}\right]=x_{2}\left[\begin{array}{r}
-1 \\
1
\end{array}\right], \quad x_{2} \text { free }
$$

so a basis for this eigenspace is $\{(-1,1)\}$.
(c) The matrix P has columns given by the basis vectors calculated in part (b). That is,

$$
P=\left[\begin{array}{rr}
-2 & -1 \\
1 & 1
\end{array}\right]
$$

and D is the diagonal matrix with the corresponding eigenvalues

$$
D=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]
$$

(d) By the inverse formula for 2×2 matrices:

$$
P^{-1}=\frac{1}{-1}\left[\begin{array}{rr}
1 & 1 \\
-1 & -2
\end{array}\right]=\left[\begin{array}{rr}
-1 & -1 \\
1 & 2
\end{array}\right]
$$

Checking:

$$
P D P^{-1}=\left(\left[\begin{array}{rr}
-2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{lr}
1 & 0 \\
0 & 2
\end{array}\right]\right)\left[\begin{array}{rr}
-1 & -1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{rr}
-2 & -2 \\
1 & 2
\end{array}\right]\left[\begin{array}{rr}
-1 & -1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{rr}
0 & -2 \\
1 & 3
\end{array}\right]=A
$$

(e)

$$
\begin{aligned}
A^{10}=P D^{10} P^{-1} & =\left(\left[\begin{array}{rr}
-2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
0 & 1024
\end{array}\right]\right)\left[\begin{array}{rr}
-1 & -1 \\
1 & 2
\end{array}\right] \\
& =\left[\begin{array}{rr}
-2 & -1024 \\
1 & 1024
\end{array}\right]\left[\begin{array}{rr}
-1 & -1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{rr}
-1022 & -2046 \\
1023 & 2047
\end{array}\right]
\end{aligned}
$$

5. (a) Note that

$$
A B \mathbf{v}=A(B \mathbf{v})=A(3 \mathbf{v})=3(A \mathbf{v})=3(2 \mathbf{v})=6 \mathbf{v}
$$

By definition, \mathbf{v} is an eigenvector of $A B$ with eigenvalue 6 .
(b) Note that

$$
\operatorname{det}(C-2 I)=\operatorname{det}\left[\begin{array}{rr}
-1 & 1 \\
0 & 0
\end{array}\right]=0
$$

so 2 is an eigenvalue of C. Similarly,

$$
\operatorname{det}(D-3 I)=\operatorname{det}\left[\begin{array}{rr}
-2 & 0 \\
1 & 0
\end{array}\right]=0
$$

so 3 is an eigenvalue of D. However, since

$$
\operatorname{det}(C D-6 I)=\operatorname{det}\left(\left[\begin{array}{ll}
2 & 3 \\
2 & 6
\end{array}\right]-\left[\begin{array}{ll}
6 & 0 \\
0 & 6
\end{array}\right]\right)=\operatorname{det}\left[\begin{array}{rr}
-4 & 3 \\
2 & 0
\end{array}\right]=-6 \neq 0
$$

it follows that 6 is not an eigenvalue of $C D$.

