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Variable Substitution

“Say, didn’t he say he was going to show us how to calculate that integral at the end of class?”

Okay, I forgot, but here’s a rapid review of the integration technique known as “variable
substitution” or “change of variables.”

Variable Substitution

Say we have an integral we want to evaluate, like:

∫ b

a

f(t)dt (1)

If we write t = h(u) as a function of another variable u, then under some conditions (f continuous,
h having continuous derivative), it’s true that

∫ b

a

f(t)dt =

∫ β

α

f(h(u))h′(u)du (2)

where α and β are chosen so that a = h(α) and b = h(β). If we pick the right t = h(u), the new
integral (2) will be much easier to evaluate than the old one (1).

Example from Class

Take the example from class. We want to evaluate the integral:

∫ T

0

√

1 + 9

4
t dt =

∫ T

0

(

1 + 9

4
t
)1/2

dt

Note that if u = 1 + 9

4
t, so that t = h(u) = 4

9
(u − 1), then h′(u) = 4

9
, so we can write:

∫ T

0

(

1 + 9

4
t
)1/2

dt =

∫ β

α

(

1 + 9

4
h(u)

)1/2
h′(u)du

=

∫ 1+
9

4
T

1

u1/2 4

9
du

=
4

9

u3/2

3/2

∣

∣

∣

∣

1+
9

4
T

1

= 8

27
(1 + 9

4
T )3/2

−

8

27

Because 8 = 43/2, with a little manipulation we get the same answer as in class:

(4 + 9T )3/2

27
−

8

27
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Note that actually applying formula (2) is a little gross. Most people, including me, play a
little fast and loose and do it this way. To evaluate the integral:

∫ T

0

(

1 + 9

4
t
)1/2

dt

I know I’d like to make the variable substitution u = 1 + 9

4
t so I’ll be taking the integral of

the square root of a single variable (something we have a rule for) instead of a more complex
expression. Because u = 1 + 9

4
t, we can write

du

dt
=

9

4

and so (this is the fast and loose part), we can pretend for a minute that the du and dt can be
broken apart and write du = 9

4
dt and so dt = 4

9
du.

Now, it’s just a matter of rewriting all the parts that involve t (including the limits of integra-
tion) in terms of u:

∫ t=T

t=0

(

1 + 9

4
t
)1/2

dt =

∫ u=1+
9

4
T

u=1+
9

4
0

u1/2 4

9
du

and the rest of the calculation proceeds as above.

A Trigonometric Substitution

A slightly more interesting example is the following integral:

∫ b

a

1

1 + x2
dx

This is one of a number of integrals where substituting x with a trigonometric function of an-
other variable u is helpful. Knowing which substitution to use is a matter of trial and error (or
memorization). Here, note that the substitution x = tanu (and so u = tan−1 x) has derivative
dx = sec2 u du, and so:

∫ x=b

x=a

1

1 + x2
dx =

∫ u=tan
−1 b

u=tan−1 a

1

1 + tan2 u
sec2 u du

The reason this is an easier integral to work with is because of the trigonometric identity 1 +
tan2 u = sec2 u (which you can derive by dividing both sides of sin2 u + cos2 u = 1 by cos2 u). As
a result, we have:

∫ x=b

x=a

1

1 + x2
dx =

∫ u=tan
−1 b

u=tan−1 a

1 du = u

∣

∣

∣

∣

u=tan
−1 b

u=tan−1 a

= tan−1 b − tan−1 a

If you look at the table of integrals at the back of your textbook, near the bottom of the
“Elementary Integrals” (ha!) section, you’ll see the formula:

∫

dx

a2 + x2
=

1

a
tan−1 x

a
+ C
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which for a = 1 gives:
∫

dx

1 + x2
= tan−1 x + C

or, for a definite integral:
∫ b

a

dx

1 + x2
= tan−1 b − tan−1 a

which is what we calculated with our substitution.
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