Math 263 Topic Outline

(back to course webpage)

This is archived information for Math 263 Sect 101 (Fall, 2004).

Title; Textbook Sections Hours
(Approx)
Description
Coordinate Geometry in Space
10.1-10.4
3
  • Analytic geometry in 2- and 3-space
  • Vectors, dot products, projections
  • Cross products
  • Planes and lines
Vector-Valued Functions of One Variable
11.1-11.3
3
  • Derivatives
  • Interpretations: velocity, speed, acceleration
  • Parametrizing curves
Scalar Fields
10.5; 12.1-12.9
9
  • Visualization
  • Partial derivatives
  • Linear approximations
  • Gradients and directional derivatives
  • Higher order derivatives
  • Quadratic approximations
  • Chain rule and implicit functions
Using Partial Derivatives
13.1-13.3, 13.6
5
  • Local maxima and minima
  • Constrained optimization
  • Newton's method
Multiple Integrals
14.1-14.6
8
  • Double integrals; iteration and re-iteration
  • Polar coordinates
  • Triple integrals
  • Cylindrical and spherical coordinates
Vector Fields
15.1-15.6
8
  • Visualization
  • Line integrals
  • Conservative fields and potentials
  • Surfaces in 3-space: parametric form, graph form, level-set form
  • Integrals of scalar functions over surfaces in 3-space
  • Oriented surfaces and flux integrals
Vector Calculus, with Applications
16.1-16.6
9
  • Divergence, gradient, and curl; identities
  • Vector potentials
  • Theorems of Gauss, Green, and Stokes
  • Applications to conservation laws, fluid flow, electrostatics
Hours on Outline 45
  • (50 meetings this term, 3 used for tests.)

This is archived information for Math 263 Sect 101 (Fall, 2004).

(back to course webpage)


Last revised: Fri Sep 10 14:47:03 PDT 2004